skip to main content


Search for: All records

Creators/Authors contains: "Hawthorne, Peter L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Metacommunity theory predicts that the composition and diversity of a site depend on its characteristics and those of its neighborhood. Dispersal between plots in a field experiment could link responses observed in a focal plot to both its treatment and those of its neighbors. However, the diversity, composition, and treatments of neighboring plots are rarely included in analyses of experimental treatments. We analyzed a spatially gridded grassland nitrogen addition experiment and found that plant species richness and the composition of focal plots were influenced not just by their nitrogen treatment but also by the number of species in neighboring plots and their abundances. For each additional species in a focal plot's neighborhood, the species richness of the focal plot increased by 0.30 species. Control plots had a significant loss of species, at a rate of ~0.23 species per year during the 23‐year experiment, but only when their neighborhoods had low species richness. Changes in the abundance of the three dominant species depended both on the nitrogen treatment of a focal plot and on their abundance in adjacent plots. Our analyses suggested that both the experimental nitrogen treatments and metacommunity processes codetermined plant species richness and plant species’ abundances. Our findings suggested that analyzing many traditional field experiments with a metacommunity perspective may reveal a confounding of experimental treatments and provide empirical data to test metacommunity theory.

     
    more » « less
  2. Despite decades of policy that strives to reduce nutrient and sediment export from agricultural fields, surface water quality in intensively managed agricultural landscapes remains highly degraded. Recent analyses show that current conservation efforts are not sufficient to reverse widespread water degradation in Midwestern agricultural systems. Intensifying row crop agriculture and increasing climate pressure require a more integrated approach to water quality management that addresses diverse sources of nutrients and sediment and off-field mitigation actions. We used multiobjective optimization analysis and integrated three biophysical models to evaluate the cost-effectiveness of alternative portfolios of watershed management practices at achieving nitrate and suspended sediment reduction goals in an agricultural basin of the Upper Midwestern United States. Integrating watershed-scale models enabled the inclusion of near-channel management alongside more typical field management and thus directly the comparison of cost-effectiveness across portfolios. The optimization analysis revealed that fluvial wetlands (i.e., wide, slow-flowing, vegetated water bodies within the riverine corridor) are the single-most cost-effective management action to reduce both nitrate and sediment loads and will be essential for meeting moderate to aggressive water quality targets. Although highly cost-effective, wetland construction was costly compared to other practices, and it was not selected in portfolios at low investment levels. Wetland performance was sensitive to placement, emphasizing the importance of watershed scale planning to realize potential benefits of wetland restorations. We conclude that extensive interagency cooperation and coordination at a watershed scale is required to achieve substantial, economically viable improvements in water quality under intensive row crop agricultural production.

     
    more » « less